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Properties of the equations describing the creep of metals are investigated. The 
unique solvability of the stationary boundary value problem and of the nonsta- 
tionary initial-boundary value problem, attainment of the stationary mode by the 
solution of the nonstationary equation and the convergence of the numerical solu. 
tion algorithms, are all proved. 

1. S t a t e m e n t  o f  t h e  p : o b l e m .  In the plane theory of creep of metals, the 
equations connecting the deformation rate tensor with the stress tensor have the form [1] 

1 ~ i O ( v ' ' v u ) ) ( 1 . 1 )  
L-~ = y /  (T,~) ( 2 ~ - -  ~ ) + T 6 - ~ "  ~ l-T-V(z~ ~- 

1 / o  ~ _ _  
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T = (Oxx 2 -~ (~uv 2 - -  ox~c~vv -}- 3oxv2)'/,, (x, y ) ~  P. 

Here fl is a bounded region on a plane, • is time and T is the stress intensity. We 
assume that the function f~ (T, ~) monotonous and continuous in T ~ [0, co) for 
every • ,  satisfies the inequality 

j t ]e (T ,  T) ~ c a t  m -~ C4 cl + c~T '~ "~ 

where the constants c 1 ~  0 and c ~  0, i = 2, 3, 4 an d  m ~ 0 .  In addition, a 
positive function y (x) continuous in • ~ (0, oo) is such that the function In (T,  x) 
/ y (T) is continuous in • ~ [0, oo] for every T and 

j "~ (p  ) d p "-> ~ , "~ ---. ~ 
0 

System (1. 1) together with the equations of equilibrium (1. 2) and compatibility (1.3), 
c9~xx Bzxv Ozuu Oz 
o~ -I- oy =0' ~ -l- ~ ( L 2) 

O2~xx On~vv - a2~xv (1.  3) 

represents a closed system of equations. 
In Sect. 2 we consider the initial-boundary value problems for the equations (1. 1) -- 

(1. 3), and discuss their properties. Let us describe briefly these l~oblems. In the first 
initial-boundary value problem the displacements ui - -  q~l are given on the boundary 
of the region, and the stress tensor o f f  at the initial instant of time. Inhomogeneity of 
the boundary conditions for u: is contained in a separate term in the left-hand side of 
(1. 1) 
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In accordance with the Castigliano lmnciple [2] the generalized solution of the prob- 
lem obtained is represented by the functions cri] (x) satisfying (1. 2), for which the iden- 
tity "fO 

dT S [~J - -  @,~ (~0)1 5,J °dx dy = 0 (1.4) 
0 ~1 

holds for any ~i1 satisfying (1. 2). Here ~iJ = ~ J  (~11) is an abbreviated notation 
describing the system (1. 1). The above integral identity does not contain the compon- 
ents ~ij, since for any ~1 satisfying (1.3) we have 

S ~j~i~ ° d y =  dx 0 
o 

The quantities Oij obtained from (1.4) and substituted into the right-hand side of 
(1. 1), determine ~tt uniquely. The procedure is equivalent to projecting the ~Tstem 
(1.1) -- ( 1. 3) on the subspace of solutiom of (1.3), and makes possible the elimination 
of the tensor component ~1 from the equations under consideration. 

In the second initial-boundary value problem the force applied at the boundary of the 
region is given. Using the Airy function we can reduce the system (1. 1) -- (1.3) to a 
quasi-linear equation, and its generalized solution can be obtained in the urea1 manner. 

In Sect. 3 we study the behavior of the solution as x --~ co and prove that it tends to 
the solution of a stationary equation on some norm. 

In Sect. 4 we investigate the approximate methods of solving these problems. 

2.  I n l t l & l = b o u n d a z y  v J l u t  p r o b l e m l .  Performing a change of variables, 
we write the system (1. 1) in the matrix form as follows: 

d A s q - I / ( t , T )  Bo---- 
dt 

t = S "((p)dp, ~=ll~uull, 
U x,U 

(2.1) 

t - - v  1 0 , B - -  t 
A---- G ( v + l )  0 0 2 (v  ~ 1) 0 

The function / (t, T) E C [0, oo ] in t for every T and satisfies the inequality 

+ ] (t, T) csT m + c4 (2. 2) 

Let us COrLSider the following boundary and initial conditions: 

u ' lo - - - * '  - -°°  
We assume that the functions ~ and ~ can be continued into the interior of the region 
Q on the c lau  W~(m+l)/(m+l). 

By regarding the derivatives in a more general sense we find, that the left-hand side 
of the system (1. 2) defines a c lued  operator in the space of functions with a f inite norm 
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 (!Jo,J'm+2dxdY) 
1.,$ 

Let us denote by N the closed space of zeros of this operator. By definition. ~ ~ N 
if and only if the identity 

holds for any ~i  EW;~+2)I(m+x), i = t ,  2 ,and the i n t e ~  in (2.4) is bounded. We 
assume that ~o ~ N.  In addition, we shall define a space of functions ¢~ (t) ~ N ,  

t E [0, t 0] with the finite norm to 

0 

and we denote this space by Nt. 
We write ~ in the form of a sum 

= ~o + ~, ~J = T ~ ~ + 0~  j '  w~ lo~ = 0 

where ~0 is constructed in terms of ¢p and ~ given by (2.3). In accordance with the 
Castigliano principle [2] we shall call the function ~ (t) ~ N u with a finite norm 

0 0 

and the function ¢ (t) with a finite norm 
to 

0 

such that the identity 
Is  ts 

0 0 

holds for any ~llJ (t) ~ Nt t ,  the generalized solution of the problem (1. 1 ) -  (1.3) and 
(2.3), on the interval [0, to] • 

Functions with a finite norm (2. 7) are continuous in the Hilhertspace H which is the 
kernel of the operator (1. 2) given on the space of square summable functions c i j  [3]. 
For the trio of spaces N ,  H and N *  (where N *  is a space conjugate to N)  the in- 
clusion N C H ~ N *  holds, and is dense. The identity (9.7) leads to the equation 

d a~  (t) + K (t) ~ (t) = ~0, ~ [,=0 = ~o (~. 8) dt 
where the operator K (t) acts from N into N * .  

T h e o r e m  1. Operator K (t) is bounded and continuous for every t ,  and is strongly 
monotonous uniformly in t ~ [0, to]. 

P r o o f.  The continuity-and boundedne.~ follow from the properties of the function 
I (t, T)  (see [4]).  We shall prove the strong monotony. We have 

° , -  = I 
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- ~ ) ) ( ~ -  ~) 

/ ( t ,  r2) (2~v ' 1 2 - ~=))(~ + q - -  ~ v )  2 (t, 1 T1) ~ - -  

T ~ I as / ( t ,  , ) ~ . ) ( ~ . - -  . ) ] d x d y =  ~[.-~-(/(t,  T1) 
Q J L - -  

fl  

i 
/ (t, r~) (T1 --  T~) + ~- --- /(t, TI) + / (t, r~)) (6 ~-x - -  ~L i' + 

- -  - -  - -  = ) ( ~ v v  c ~ ) ) ] d x d y  

Using the fact that ] (t, T) is monotonous in T and the inequality 

y (/(t, T0 + / (t, r~)) > 6 ( ~  [I ~L - a~ I ~ + I ~ -  ~ ,  T + 1 ~ -  ~i, I'] ~ '  

we obtain 
_ c~ ! ~ - i  _ a~ ~ ÷ I  ( 2 .  9) 

From the theorem and the positiveness of the matrix A it follows [3] that Eq. (2.8) has 
a unique solution. 

Let us consider another boundary value problem in which a force is given at the bound- 
ary of the region ~ .  Expressing the stress tensor in terms of the Airy function and using 
the equation of compatibility, we arrive at the foUowing problem: 

/ ~  + 2~ ( i t+  ~) {~-  ~ [/(t, T) ( ~ F = - -  F~)] + (~. 10) 

~ = FL + ~ - -  F ~  + ~F~,  F I,-o ---- F (0) 
0~F ~ F  0~F 

If the region is singly connected, then the boundary conditions can be reduced to the 

form F Ion = ~1, OE i On Io~ = ~s 

A similar stationary problem was studied in [5], but under the assumptions made there 
about the function ! ( r )  ( T / ( T )  monotonous in r)  , the problem is only reduced to a 
strictly monotonous operator ; this is insufficient for investigating the behavior of the 
sointion of the problem (2.10) as t --, oo and for constructing algorithms for determining 
the approximate solution. 

Let us write F in the form 

where ¢p satisfies a homogeneous boundary condition, and use the spaces ~ and 
W~ z as A r and H respectively. Then, as in the previous case, the problem (2.10) re- 
duces to d~p 

d--i--~'Q(t)~P--~O, q~ It=.0 = q~0 (2.11) 

T h e o r e m 2. Operator Q (t) which main N in N*  is bounded, continuous and 
strongly monotonous for every t ~ [0, to]. 

The proof is similar to that of Theorem 1, but the inequality (2. 9) is replaced by 
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(Qq~l - -  Q ~ ,  <Pt - -  cps) > i2 (¢2-)" IIq~I - ~ + "  (2.19) 

From Theorem 2 it follows [3] that Eq. (2.11) has a unique solution. 
Let [ 0 ( T )  = l i m [ ( t ,  T) as t - - ~  q- co and let the operators K 0 and Qo be 

generated by the function ]0 (T).  Then by virtue of (2.9) and (2. 12), the problems 

Ko<r = 0, Qotp = 0 (2.13) 

have unique solutions. We shah consider the second problem of (2.13) in more de ta i l  
T h e o r e m  3, Let the constant c l i n ( 2 , 4 )  he positive, m > t and 

Io ( r )  ~ Cl[0, oo), F0 ~ c ,  Ta) 
c2,Tm-1 ..! d[ o (T) _t  "~ ~ ~ cs'T 'n-~, cs' > c~' ~ 0 

Then the operator Qo is strictly elliptic. 
P r o o f .  we introduce the following notation: 

g o x x = T h ,  F o u v = r h ,  F o = u = ~ a ,  Fov=----Th 

~ + Tli = g,, ~,l = gl~ + (;s' + s/I (;s' + s/sg,~ - -  glg~ 
D~ = Vs I0 ( T ) ( 9 ~  - -  ¢,), D ,  = l/s l0 ( ~ ( 9 ~ ,  _ ~1) 

Ds = x/~ Io (T) gs, D4 = aA Io (T) g4 

Consider the matrix D = {ODt / 0[1} and the corresponding linear operator. It is 
sufficient to show that (see [5]) the inequality 

4 )~t ¢, (D°q°O>c(a+ Y, lg, I l~P,  . > 0  
t+t 

holds for any vector c~ ~ R t. We can show by direct computation that in the conditions 
of the theorem all principal minors of the matrix D are po~tive. Therefore the form 
(D~,  ~ )  can be reduced by triangular transformation to a diagonal form with positive 
coefficients and, by virtue of the law of inertia, all eigenvalues of the symmetric matrix 
D are positive. It can be shown by computation that 

dfo (T) 

Usin 8 the estimate (see [6]) 

i / ,  ~ , n  I = II D-' II < I1 D I s/I det D I 
we obtain 4 

i=1 
which proves the theorem. From this it follows that when the boundary 0fl is sufficient- 
ly smooth, then the solution of the problem Qocp = 0 belongs to the space C ~, $ for 
some value of 5 [5]. 

$ .  l l s h ~ v l o ~  of  th~  molut ton  Is t - - ~ o o .  
L e m m a 1. Under the amumptions made in Sect. 1 concerning the dependence of 

[ (t, T) on t , t he  operators K (t) and Q (t) are stron, gly continuous in t ~ [0, oo]. 
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P r o o  f .  For any t I and t~ ~ [0, co  ], q) and ~ ~ N , we h a v e  

,<Q Q I  <n*nN[ I I['<'l × 
} ]  ~, ID, F[ 1/,~ ,;, n=m+------~ 

la |=~ , 

The integrand tends to zero as t l  --~ t 2 and, by virtue of  the inequality (2.2)  has a sum- 
mable  majorant.  Then according to the Lebegue theorem 

[I Q (tl) qD - -  Q (t~) q9 ~N* = s u p  [I '~ DN - -  

l [ < Q ( t x )  q ~ - Q ( t ~ ) c p ,  ~> I - -~0  

For the operator K(t) the proof is analogous. 
T h e o r e m 4 .  When t --~ o o ,  the solutions of (2.8)  and (2.11) tend in the space H 

to solutions of the first and second problem of (2. 13), respectively. 
P r o o f .  From the re la t ion  

d 
dt (q~ (t) - -  q~) + Q (t) ¢p (t) - -  Q (t) ¢p q- Q (t) q) - Q0q0 = 0 

where Q0 ¢p = 0 and the formula (2.12) we obtain, after multiplying by ¢p (t) - -  ¢p 
and integrating in t from t I to t 2 

fs 

+ y ( t ~ ) -  t c~ I~q~(t)--~l~+2dt + (3.1)  
y (tl) ~< t2 ( - ~ ' ) "  t, 

ts 

h 

From (3.1) ,  the HSlder inequality in e and Lemma 1, follows 
ts 

Y (Q) - -  y (tx) ~< - -  a S (Y ( t)m/2+l - -  "f (t)) dt (3 .2)  
tx 

a > 0 ,  v ( t ) ~ C [ 0 ,  co], V ( t ) > 0  

From (3 .2)  we find that  Y (t) cannot be strictly larger than any 8 when t E [0, Co ]. 
I f  // (t) does not tend to zero as t ~ co,  then a sequence of intervals [tli, t~}] can 
be found such that e = y (tli) = y (t~i), y (t) > e for t ~ (tl  ~, t2 i) , with i assum- 
ing the values ranging either from 0 to Co, or from 0 to k. In the first c a s e  $1,~ i ~ Co 
as i --~ co ,  and in the second case tl  k < Co, t~ ~ = co.  The assumption of the ex-  
istence of such intervals contradicts the inequality (3.2) .  In fact,  setting h = tli and 
h E ( t / ,  t , ' )  for sufficiently large (or the last value) of i, from (3.2) ,  by virtue of  the 
fact  that 7 (t) --~ 0 as t --~ Co , we obtain the following contradiction 

e < y  (h) < y  (h) < 8  
When Q is independent of  t ,  from (3.2)  it follows that y (t) ~ 0 monotonously. For 
the problem (2. 8) the l~oof is similar.  

4. approx imate  methods of so lut ion  sad their c o n v e t s s n c s ,  
AU approximate methods can be based on a single scheme. For this reason we shall con- 
sider, as an example ,  the method of finite e lements ,  which finds at present moat appl ica-  
tions in the theory of elast ici ty and plasticity. We construct a regular partition of the 
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region into a manifold ~h o f  finite elements. Under the regular partition we understand 
such partition in which the neighboring elements have either a common vertex or a com. 
mon side, and can be mapped onto an isosceles right-angled triangle by means of a non- 
singular transformation. 

Let piecewise polynomial functions ~i j  ~ N (i, j is the node number) different 
froha zero only in the elements containing the given node Z, ] be specified on ~h • We 
shall seek the p - t h  approximation in the form 

i, jEfJ h 
where the coefficients cOP are found from the system of equations 

(Qoe~ (v), ~ 1 )  = O, i, ] ~ ~t~ (4.2) 

By (2. 12), the system (4.2) has a unique solution and II ~c~) II~ < c ( p )  
Let us substitute q~l --~ cp and (p2 ~--- (p(v) into the inequality (2.12). Then for any 

coefficients d U we obtain 

Y 
t,jCnh t2 ( ] / '~)m 

from which by virtue of the boundedness of Qo,  follows 

i,j 
The convergence of @(~) to ~ follows from the fact that (p can be approximated by the 
supporting functions. The rate of convergence depends on the choice of functions ~PO 
and on the smoothness of the solution ~ (for more detail ~ee [7]).  

Let us now construct the algorithm from the solution of (4.2). Since 

" . .  ~ '  I D=q~<v) I <  c 

7 

/ 

r/ 
I 

o 

f 

3 

Fig. 1 

S 
p 

q~tp) will still remain a solution of (4. g) provided tha t /o (T)  
in this system is replaced by the truncated function 

(4. 3) 

[ /0  (r), r ~< ~ = 5 sup ~, I D= (F0 + ~(P))I 
f0 (r) = / lal=2 

/oCT), T ~ T  

as the monotonous character of f0 (T) guarantees that the 
modified system has a unique solution and q)(P) satisfies 
this automatically. We shall denote the operator correspond- 
ing to the truncated function by g 0 ,  assume that ctl v = 
cij (t) and cop (0) ~ 0, and consider the equation 

d~(p) (t) I dt -4- go q~¢P) (t) = 0 (4. 4) 
~uo) 

From the resulta of Sect. 3 it follows that -¢(t) tends mono- 
tonouLly to q)(v) in H as t ~ co. It is therefore sufficient 
to be able to solve (4. 4) on any interval [0, to]. We shall 
solve Eq, (4. 4) according to the explicit scheme 
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¢(p> ((n + t)~) ¢(~) (n~) = T5 _(v) (4. 5) ~0~(n~)  

After scalar multipl ication of (4. 5) by -(P) 'v(n+z)~ in H , we apply the H61der inequal- 
ity in S to obtain the estimate 

II ((" + i)  )In < (i + m(,), U ,v(n~) Ner (4. 6) 

fl re(P) , from which the boundedness of U'v(n~)II at any N and n ---~ 0 . . . .  , N follows. 

The estimates (4. 6) and the boundedness of Q0 in H are together sufficient to show 
that ~(v) W(n~) in H converges weakly to the solution of (4. 4). The same scheme can be 
used to solve the nonstationary problem (2. 10) under the additional ~_~_,mption of smooth. 
ness needed for performing the truncation (4.2). 

Below we give the results of the numerical computatiom. In the first ease in which f~ 
is an annulus with a free inner boundary (natural boundary condition) and an axially sym- 
metric load is applied at the outer boundary, Fig. i shows the dependence of orr on r 
for an elastic state (solid line) and for a steady creep (dashed line) for ] (T) = 7".'. In 
the second case we have a square region (z, y) ~ [--20, 201 X [--20, 201 with such 
boundary conditions, that the Airy function of elastic state has the form F,  - -  0.t (60a~ - -  

z3  _{_ 60y2 _ yS). T a b I e 1 

20 I 1625 
16 II0~ 
12 702 

1702 
1231 
783 

1942 
1525 
1004 

12 

2302 
182,3 
1417 

i6 

2724 
23t4 

20 

3207 8 
4 
0 

0 & 

341 421 
35 182 
18  

8 i2 

672 - -  

Table i gives the val~es of the Airy function for y ~ z ~ 0. In the region x ~ / /  
0 the results are symmetric about the diagonal of the table. The Airy function is distri- 
buted in parity over the whole region. 
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