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Properties of the equations describing the creep of metals are investigated, The
unique solvability of the stationary boundary value problem and of the nonsta-
tionary initial-boundary value problem, attainment of the stationary mode by the
solution of the nonstationary equation and the convergence of the numerical solu-
tion algorithms, are all proved.

1, Statement of the problem, In the plane theory of creep of metals, the
equations connecting the deformation rate tensor with the stress tensor have the form[1]
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Here Q is a bounded region on a plane, Tt istime and T is the stress intensity, We
assume that the function f° (7', t) monotonous and continuous in I' & [0, oo) for
every t,satisfies the inequality
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where the constants ¢; > 0 and ¢;> 0, i = 2, 3, 4 and m > 0. In addition, a
positive function v (%) continuous in T & (0, co) is such that the function f° (T, «)
/ v (v) is continuous in © & [0, oo] for every T and
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System (1. 1) together with the equations of equilibrium (1. 2) and compatibility (1. 3),
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represents a closed system of equations.

In Sect. 2 we consider the initial-boundary value problems for the equations (1. 1) —
(1. 3), and discuss their properties. Let us describe briefly these problems. In the first
initial~boundary value problem the displacements u; == @, are given on the boundary
of the region, and the stress tensor 0;; at the initial instant of time. Inhomogeneity of
the boundary conditions for ¥; is contained in a separate term in the left-hand side of
(LD
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In accordance with the Castigliano principle [2] the generalized solution of the prob-
lem obtained is represented by the functions @;; () satisfying (1. 2), for which the iden-
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holds for any ;; satisfying (1.2), Here §;; = ®;; (0y;) is an abbreviated notation
describing the system (1, 1). The above integral identity does not contain the compon-
ents (;j, since for any {;; satisfying (1.3) we have

{tyoipdzay =0
Q

The quantities O;; obtained from (1.4) and substituted into the right-hand side of
(1 1),determine §;; uniquely. The procedure is equivalent to projecting the system
(1. 1)— (1. 3) on the subspace of solutions of (1. 3), and makes possible the elimination
of the tensor component {;; from the equations under consideration,

In the second initial-boundary value problem the force applied at the boundary of the
region is given. Using the Airy function we can reduce the system (1.1)—(1.3) to a
quasi-linear equation, and its generalized solution can be obtained in the usual manner.

In Sect, 3 we study the behavior of the solution as v — oo and prove that it tends to
the solution of a stationary equation on some norm,

In Sect. 4 we investigate the approximate methods of solving these problems,

2, Initial=boundary value problems, Performing a change of variables,
we write the system (1. 1) in the matrix form as follows:

S Ao+ +f(t,T)Bs=} (2.1)
T 5::: Exx
t=S'r(p)dp, o=|owl, &=}
0 Oxy §xv
1 —w 0 2 —1 0
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The function f (t, T) & C [0, oo] in ¢ for every T and satisfies the inequality
G+ TR T)<KegI™ + ¢4 (2.2
Let us consider the following boundary and initial conditions:
Uog =P Us|oq =P S|y =050 (2.3)
We assume that the functions ¢ and 1 can be continued into the interior of the region
Q on the class W?m+a)/(m+1)-

By regarding the derivatives in a more general sense we find, that the left-hand side
of the system (1. 2) defines a closed operator in the space of functions with a finite norm
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Let us denote by N the closed space of zeros of this operator. By definition, g = N
if and only if the identity
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holds for any ¥; & W(m.+2)/(m+1), i = 1, 2,and the integral in (2. 4) is bounded. We
assume that 0y €& N. In addition, we shall define a space of functions 6 (f) & N,
t = [0, t,] with the finite norm +,

(fls @)™

and we denote this space by NV,
We write & in the form of a sum ( ow,

E=E 48 b= 7 +ax),wi|m=0

where &, is constructed in terms of ¢ and 1 given by (2.3). In accordance with the
Castigliano principle [2] we shall call the function ¢ (f) & Ny, with a finite norm
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and the funcnon ¢ (f) with a finite norm
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such that the identity
t‘ t.

S dt& (%AG +%f(t, T) Bs, ﬂ) drdy = S dt§ (B0, mdzdy (2.7
0 0
holds for any My (f) = NV, , the generalized solution of the problem (1.1) —(1.3) and
(2. 3), on the interval [0, Z,] .

Functions with a finite norm (2. 7) are continuous in the Hilbertspace H which is the
kemel of the operator (1. 2) given on the space of square summable functions o;;j [3].
For the trio of spaces N, H and N* (where N* is a space conjugate to N) the in-
clusion N C H C N* holds, and is dense, The identity (2, 7) leads to the equation

S At) K@) o(t) =8, 0| =00 (2.8)

where the operator K (£) acts from & into N* .

Theorem 1, Operator K (t) is bounded and continuous for every ¢ , and is strongly
monotonous uniformly in ¢ & [0, £,].

Proof. The continuity-and boundedness follow from the properties of the function
f (¢, T)(see [4]). We shall prove the strong monotony. We have

(Ko, — Koy, 6, — Gp) = S [%(f(t, T) (25}5,3-—-611,,,) -
)
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Using the fact that f (¢, T) is monotonous in T and the inequality

(f(t T1) + (@t Ta)) >~ [| ke — 02y [* + | 0y — °w|2+|°xu—°xy|'m/z
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we obtain
< ¢4 0t — o > (V_)mnc o* [y (2.9

From the theorem and the positiveness of the mmatrix A it follows [3] that Eq. (2. 8) has
a unique solution,

Let us consider another boundary value problem in which a force is given at the bound-
ary of the region Q . Expressing the stress tensor in terms of the Airy function and using
the equation of compatibility, we arrive at the following problem:

5 BF 426 (1+ V) {5 325 17 (¢, T) @F e — Fi)] + (2.10
'ﬁ—gy‘i[f(t’T)(sz—Fxx)]+-3—$7y'[f(t,T)qu]}=0

= Frx+ Fiy— FueFyy + 3Fzy,  Fliio=F(0)
?F aF 02F
Oxx = g7 W =@ S = " Gy
If the region is singly connected, then the boundary conditions can be reduced to the
form F lan = \pl, aE l an Ioﬂ = w’

A similar stationary problem was studied in [5], but under the assumptions made there
about the function f (T) ( 7f (I) monotonous in T) , the problem is only reduced to a
strictly monotonous operator ; this is insufficient for investigating the behavior of the
solution of the problem (2.10) as ¢ —» oo and for constructing algorithms for determining
the approximate solution,

Let us write F in the form

F=9¢+F, Foc=Wh,
where @ satisfies a homogeneous boundary condition, and use the spaces Wpy,, and
W2 as N and H respectively. Then, as in the previous case, the problem (2. 10) re~

d t d
uces to _dftr;_‘_Q(t)q,:o, (P|t=o=q’° (2.11)

Theorem 2, Operator Q () which maps N in N* is bounded, continuous and

strongly monotonous for every ¢ & [0, 2,].
The proof is similar to that of Theorem 1, but the inequality (2. 9) is replaced by
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Q91— Q9,, ¢, — P> > '1"2(%5)—".'" P1— P, ,m_wz (2.12)

From Theorem 2 it follows [3] that Eq, (2. 11) has a unique solution,
Let fo (I) = limf (¢, T) as t —~ + oo and let the operators K, and Q, be
generated by the function f, (T). Then by virtue of (2. 9) and (2. 12), the problems

Ky =0, Qup =0 (2.13)

have unique solutions. We shall consider the second problem of (2. 13) in more detail,
Theorem 3, Let the constant ¢, in (2.4) be positive, m > 1 and

fo (T) &€ CM0, ), Fy = C*R)
cz/Tm—l < df;T(‘T) < Ca'Tm_l, csl >car >O

Then the operator (Jq is strictly elliptic.
Proof. We introduce the following notation;

Pex = &1, Qyy = &y, Pay = E3» Py = &

Foxx =M1, Foyy =g, Foxy = Mg, Foye =14
E+n=20, TP=024+0+% 8 + 3Tl — Thls
D1 = 1/ fo (T)(ZCI — Gy Da =1/, fo (1')(2;, — &)
Da = 1/2 fo (T) Ca» D4 lla fo (T) CL

Consider the matrix D = {8D; / 3;} and the corresponding linear operator, It is
sufficient to show that (see [5]) the inequality
a

(Da,a) > ¢ (a—l— 2 Igil)mlaﬂ’, ¢, a>0
+1

holds for any vector o & R*. We can show by direct computation that in the conditions
of the theorem all principal minors of the matrix D are positive. Therefore the form
(Da, @) can be reduced by triangular transformation to a diagonal form with pogitive
coefficients and, by virtue of the law of inertia, all eigenvalues of the symmetric matrix
D are positive, It can be shown by computation that

detD>f—°‘7——4(8T), 1D]< 24[fo(T)+dfo(T)T]
Using the estimate (see [6])
1/ [ Aawm | =D <<|D)}*/|det D |

we obtain
Amin > c(a+ Z |§i|)
i=1
which proves the theorern, From this it follows that when the boundary 4Q is sufficient-
ly smooth, then the solution of the problem Q,p = O belongs to the space C** for
some value of § [5].

8. Behavior of the solution as ¢ —oo.
Lemma 1. Under the assumptions made in Sect. 1 concerning the dependence of
f (¢, T)on t,the operators K (t) and Q (t) are strongly continuous in ¢ & [0, co].
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Proof. Forany ¢, and I, & [0, o], @ and Y & N , we have
Qe o= Qe wI<IvIy[{ {7/tn D —re D] x

1/nn
2 ID“FI} "] : n=$—i;
[at=2 .
The integrand tends to zero as {, — ¢, and,by virtue of the inequality (2. 2) has a sum-
mable majorant. Then according to the Lebegue theorem

1Q () o —Q(t) @lve =sup| Py =
1KQ@) o —Q () g, v> | =0
For the operator K(t) the proof is analogous.
Theorem 4. When t — oo, the solutions of (2. 8) and (2. 11) tend in the space H
to solutions of the first and second problem of (2. 13), respectively,
Proof. From the relation

2 PO —-9)+ QW) — QP+ Q)P — Qop =0

where @y ¢ = 0 and the formula (2. 12) we obtain, after multiplying by ¢ (f) — ¢
and integrating in ¢ from ¢, to ¢,

ty
let)y—of™dt+ .1

1 1 ca
Syl — 5y t) < — V")

[
(le@—olv 109 — Quln-dt, y®)=]o@®)—of
t

From (8, 1), the Hélder inequality in & and Lemma 1, follows

143
y(t) —y ) < —a§u@me —y ) ar (3.2)
iy

a>0, y()eCI0, ], y()>0

From (3. 2) we find that ¥ (£) cannot be strictly larger than any & when ¢ & [0, oo].
If y () does not tend to zero as ¢ — oo, then a sequence of intervals [£,i, £,i] can
be found such that & = y (£,i) = y (£,i), y () > e for t & (¢}, Ly¥) , with i assum-
ing the values ranging either from 0 to oo, or from 0 to k. In the first case ;3¢ — o0
as i — o0, and in the second case f*¥ < oo, ¢,¥ = oo. The assumption of the ex~
istence of such intervals contradicts the inequality (3. 2). In fact, setting £, = ¢, and
ty & (4,1, t,') for sufficiently large (or the last value) of i, from (3. 2),by virtue of the
fact that y (1) =0 as ¢ — oo , we obtain the following contradiction

e<y(t) <y(t) <e

When @ is independent of ¢, from (3, 2) it follows that y (f) — 0 monotonously. For
the problem (2. 8) the proof is similar.

4. Approximate methods of solution and their convergence.
All approximate methods can be based on a single scheme. For this reason we shall con-
sider, as an example, the method of finite elements, which finds at present most applica-
tions in the theory of elasticity and plasticity. We construct a regular partition of the
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region into a manifold €, of finite elements, Under the regular partition we understand
such partition in which the neighboring elements have either a common vertex or a com-
mon side, and can be mapped onto an isosceles right-angled triangle by means of a non-
singular transformation.

Let piecewise polynomial functions ¢;; & N (i, j is the node number) different
from zero only in the elements containing the given node i, j be specified on Q. We
shall seek the p-th approximation in the form

o = X chpy (4.
i, jeq,
where the coefficients c;;? are found from the system of equations
<Qoq3(p)’ (Pij> = 01 i ]E Qh (4.2)

By (2. 12), the system (4. 2) has a unique solution and | ¢(? |y <C ¢ (p)-
Let us substitute @, = ¢ and @, = @{P) into the inequality (2, 12). Then for any
coefficients d;; we obtain

0™, 3 dipy—9 >

1Lich, 12 (VZ )
from which by virtue of the boundedness of (, , follows

u Zduq’u“ >clof® — (P"mm

The convergence of ¢(P) to ¢ fol.lows from the fact that ¢ can be approximated by the
supporting functions, The rate of convergence depends on the choice of functions @;;
and on the smoothness of the solution @ (for more detail see [7]).

Let us now construct the algorithm from the solution of (4. 2). Since

o, 2 | D | e
14 Y fal=2
@®) will still remain a solution of (4. 2) provided that f,(T)
in this system is replaced by the truncated function
(4.3)

fo(T), T<T=5sup X |D=(Fy+ ¢P)]
fo(T)= lai=2

f 0 (T)v r > T
as the monotonous character of f, (I') guarantees that the
modified system has a unique solution and @(P} satisfies
this automatically. We shall denote the operator correspond-
ing to the truncated function by (, , assume that ¢;;# =
¢;; (t) and ¢;3® (0) = 0, and consider the equation

do® (t) / dt + 0y P (t) = 0 (4.4)

From the results of Sect. 3 it follows that ¢(f} tends mono-~

7 3 5 tonously to @) in H as t — oo. It is therefore sufficient
7 tobe able to solve (4. 4) on any interval [0, ,]. We shall
Fig. 1 solve Eq, (4. 4) according to the explicit scheme

ﬂq)(?) —0Q |ﬂ'v”'2
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P ((n+1)7) — ¢ (n7) = Tty (4.5)

After scalar multiplication of (4. 5) by q)g,’,’ll), in H ,we apply the Hdlder inequal-
ity in e to obtain the estimate

1o® ((n+ D)) e < (1 + cv) [ Ja (4.6)

from which the boundedness of lltpfﬁ),)“ atany Nand n =0, ... N follows.

The estimates (4. 6) and the boundedness of @, in H are together sufficient to show
that q;éﬁl) in H converges weakly to the solution of (4. 4). The same scheme can be
used to solve the nonstationary problem (2. 10) under the additional assumption of smooth-
ness needed for performing the truncation (4. 2).

Below we give the results of the numerical computations. In the first case in which Q
is an annulus with a free inner boundary (natural boundary condition) and an axially sym-
metric load is applied at the outer boundary, Fig. 1 shows the dependence of ¢,y on r
for an elastic state (solid line) and for a steady creep (dashed line) for f (T) = 7%, In
the second case we have a square region (z, y) & [—20, 20] X [—20, 20] with such
boundary conditions, that the Airy function of elastic state has the form F, — 0.1 (602 —

3 2 __ ;3
2+ 60y ¥)- Table 1

* 0 4 8 12 16 20 x 0 4 8 2] 16} 2
v v

20 | 1625 | 1702 | 1942 | 2302 | 2724 | 3207 8 341 | 421 | 672} — | — | —
16 | 1104 | 1231 | 1525 | 1823 | 2344 | — 4 35 | 182 - —1—-1-
12 702 | 783 | 1004 § 1447 | — — 0 18 - — 1 —1—1-

Table 1 gives the values of the Airy function for ¥ > z > 0. In the region z > y >
0 the results are symmetric about the diagonal of the table. The Airy function is distri-
buted in parity over the whole region,
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